Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Immunol ; 15: 1343602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455048

RESUMO

Introduction: Single nucleotide variations (SNVs) are specific genetic variations that commonly occur in a population and often do not manifest phenotypically. However, depending on their location and the type of nucleotide exchanged, an SNV can alter or inhibit the function of the gene in which it occurs. Immunoglobulin G (IgG) receptor genes have exhibited several polymorphisms, including rs1801274, which is found in the FcgRIIa gene. The replacement of A with T results in a Histidine (H) to Arginine (R) substitution, altering the affinity of the IgG receptor for IgG subtypes and C-reactive protein (CRP). In this study, we analyzed rs1801274 and its functional implications concerning L. Infantum uptake and cytokine production. Methods: We genotyped 201 individuals from an endemic area for visceral leishmaniasis to assess the presence of rs1801274 using Taqman probes for a candidate gene study. Additionally, we included seventy individuals from a non-endemic area for a functional study. Subsequently, we isolated and cultivated one-week adherent mononuclear cells (AMCs) derived from the peripheral blood of participants residing in the non-endemic region in the presence of L. infantum promastigotes, with and without antigen-specific IgG and/or CRP. We analyzed the rate of phagocytosis and the production of nitric oxide (NO), tumor necrosis factor (TNF)-a, interleukin (IL)-10, IL-12 p70, IL-1b, IL- 6, and IL-8 in the culture supernatants. Results and discussion: In participants from the endemic region, the A/G (H/R isoform) heterozygous genotype was significantly associated with susceptibility to the disease. Furthermore, SNVs induced a change in the phagocytosis rate in an opsonin-dependent manner. Opsonization with IgG increased the production of IL-10, TNF-a, and IL-6 in AMCs with the H/R isoform, followed by a decrease in NO production. The results presented here suggest that the rs1801274 polymorphism is linked to a higher susceptibility to visceral leishmaniasis.


Assuntos
Leishmania infantum , Leishmaniose Visceral , Humanos , Leishmaniose Visceral/genética , Leishmania infantum/genética , Receptores de IgG/genética , Interleucina-12 , Fator de Necrose Tumoral alfa , Nucleotídeos , Isoformas de Proteínas , Variação Genética , Imunoglobulina G
3.
Comput Struct Biotechnol J ; 21: 2579-2590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122631

RESUMO

The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor heavily investigated in infectious and non-infectious diseases. Because of its role in amplifying inflammation, TREM-1 has been explored as a diagnostic/prognostic biomarker. Further, as the receptor has been implicated in the pathophysiology of several diseases, therapies aiming at modulating its activity represent a promising strategy to constrain uncontrolled inflammatory or infectious diseases. Despite this, several aspects concerning its interaction with ligands and activation process, remain unclear. Although many molecules have been suggested as TREM-1 ligands, only five have been confirmed to interact with the receptor: actin, eCIRP, HMGB1, Hsp70 and PGLYRP1. However, the domains involved in the interaction between the receptor and these proteins are not clarified yet. Therefore, here we used in silico approaches to investigate the putative binding domains in the receptor, using hot spots analysis, molecular docking and molecular dynamics simulations between TREM-1 and its five known ligands. Our results indicated the complementarity-determining regions (CDRs) of the receptor as the main mediators of antigen recognition, especially the CDR3 loop. We believe that our study could be used as structural basis for the elucidation of TREM-1's recognition process, and may be useful for prospective in silico and biological investigations exploring the receptor in different contexts.

4.
Comput Biol Med ; 159: 106941, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105111

RESUMO

Rotavirus (RV) and Norovirus (NV) are the main viral etiologic agents of acute gastroenteritis (AG), a serious pediatric condition associated with significant death rates and long-term complications. Anti-RV vaccination has been proved efficient in the reduction of severe AG worldwide, however, the available vaccines are all attenuated and have suboptimal efficiencies in developing countries, where AG leads to substantial disease burden. On the other hand, no NV vaccine has been licensed so far. Therefore, we used immunoinformatics tools to develop a multi-epitope vaccine (ChRNV22) to prevent severe AG by RV and NV. Epitopes were predicted against 17 prevalent genotypes of four structural proteins (NV's VP1, RV's VP4, VP6 and VP7), and then assembled in a chimeric protein, with two small adjuvant sequences (tetanus toxin P2 epitope and a conserved sequence of RV's enterotoxin, NSP4). Simulations of the immune response and interactions with immune receptors indicated the immunogenic properties of ChRNV22, including a Th1-biased response. In silico search for putative host-homologous, allergenic and toxic regions also indicated the vaccine safety. In summary, we developed a multi-epitope vaccine against different NV and RV genotypes that seems promising for the prevention of severe AG, which will be further assessed by in vivo tests.


Assuntos
Norovirus , Rotavirus , Vacinas , Criança , Humanos , Rotavirus/genética , Norovirus/genética , Epitopos
5.
Crit Rev Oncol Hematol ; 186: 103988, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086955

RESUMO

Traditional therapeutic approaches for malignant melanoma, have proved to be limited and/or ineffective, especially with respect to their role in improving patient survival and tumor recurrence. In this regard, immunotherapy has been demonstrated to be a promising therapeutic alternative, boosting antitumor responses through the modulation of cell signaling pathways involved in the effector mechanisms of the immune system, particularly, the so-called "immunological checkpoints". Clinical studies on the efficacy and safety of immunotherapeutic regimens, alone or in combination with other antitumor approaches, have increased dramatically in recent decades, with very encouraging results. Hence, this review will discuss the current immunotherapeutic regimens used to treat malignant melanoma, as well as the molecular and cellular mechanisms involved. In addition, current clinical studies that have investigated the use, efficacy, and adverse events of immunotherapy in melanoma will also be discussed.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Imunoterapia/métodos
6.
Crit Rev Microbiol ; : 1-19, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36403150

RESUMO

The triggering receptor expressed on myeloid cells-2 (TREM-2) is an immune receptor expressed on immune and non-immune cells, more frequently investigated in neurodegenerative disorders and considered a marker for microglia activation. In infectious diseases, the receptor was initially believed to be an anti-inflammatory molecule, opposing the inflammation triggered by TREM-1. Currently, TREM-2 is associated with different aspects in response to infectious stimuli, including the induction of bacterial phagocytosis and clearance, containment of exacerbated pro-inflammatory responses, induction of M2 differentiation and activation of Th1 lymphocytes, besides of neurological damage after viral infection. Here, we present and discuss results published in the last two decades regarding the expression, activation and functions of TREM-2 during the course of bacterial, viral, fungal and parasitic infections. A surprisingly plasticity was observed regarding the roles of the receptor in the aforementioned contexts, which largely varied according to the cell/organ and pathogen type, besides influencing disease outcome. Therefore, our review aimed to critically overview the role of TREM-2 in infectious diseases, highlighting its potential to be used as a clinical biomarker or therapeutic target.

7.
Biomedicines ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140164

RESUMO

Multiple sclerosis is mediated by self-reactive myelin T and B cells that lead to axonal and myelin damage. The immune response in multiple sclerosis involves the participation of CD4+ T cells that produce cytokines and chemokines. This participation is important to find markers for the diagnosis and progression of the disease. In our work, we evaluated the profile of cytokines and chemokines, as well as the production of double positive CD4+ T cells for the production of IFNγ IL-17 in patients with multiple sclerosis, at different stages of the disease and undergoing different treatments. We found that relapsing-remitting patients had a significant increase in IL-12 production. About IL-5, its production showed significantly higher levels in secondarily progressive patients when compared to relapsing-remitting patients. IFN-γ production by PBMCs from secondarily progressive patients showed significantly higher levels. This group also had a higher percentage of CD4+ IFNγ+ IL-17+ T cells. The combination of changes in certain cytokines and chemokines together with the presence of IFNγ+ IL-17+ double positive lymphocytes can be used to better understand the clinical forms of the disease and its progression.

8.
J Genet Eng Biotechnol ; 20(1): 128, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053342

RESUMO

BACKGROUND: Leprosy is caused by Mycobacterium leprae and Mycobacterium lepromatosis. Most of the affected population lives in low-income countries and may take up to 10 years to show any clinical signs, which is how physicians diagnose it. However, due to progressive cell damage, early diagnosis is very important. The best way to confirm leprosy is through bacilloscopic, which only confirms the diagnosis and has low accuracy or PCR, that requires specialized operators and is expensive. Since the bacteria are fastidious and do not grow in any culture media, therefore, diagnosing leprosy in the lab is still a challenge. In this concern, a recombinant multi-epitope protein can be a beneficial strategy in the management of the diagnosis, as diverse immunogenic epitopes are precisely selected to detect specific antibodies. Therefore, the purposes of the present study were to select immunogenic epitopes from different relevant proteins, with immunogenic properties, and then to construct a recombinant multi-epitope protein that accuses the presence of the antibodies in the early stages of the disease, making it more than appropriate to be applied as a diagnostic tool. RESULTS: We selected 22 common proteins from both species and, using bioinformatics tools, predicted B and T cell epitopes. After multiple filtering and analyzing, we ended up with 29 epitopes {MHC-I (total 18) and MHC-II (total 11)} from 10 proteins, which were then merged into one construct. Its secondary and tertiary structures were also predicted and refined to comprise the amino acid residues in the best conformation possible. The multi-epitope protein construct was stable, non-host homologous, non-allergic, non-toxic, and elicit humoral and cellular responses. It has conformational B cell epitopes and potential to elicit IFN-γ, IL-4, and IL-10 secretion. CONCLUSIONS: This novel recombinant multi-epitope protein constructed using the common epitopes from M. leprae and M. lepromatosis has a huge immunological potential, is stable, and can be lyophilized to be used in ELISA plates or even in biosensors, which are user-friendly diagnosis tools, facilitating translation into human sample tests.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35910486

RESUMO

Background: Triatomines are blood-feeding arthropods belonging to the subfamily Triatominae (Hemiptera; Reduviidae), capable of producing immunomodulatory and water-soluble molecules in their hemolymph, such as antimicrobial peptides (AMPs). In this work, we evaluated the antifungal and immunomodulatory activity of the hemolymph of Meccus pallidipennis (MPH) and Rhodnius prolixus (RPH) against Cryptococcus neoformans. Methods: We assessed the activity of the hemolymph of both insects on fungal growth by a minimum inhibitory concentration (MIC) assay. Further, RAW 264.7 macrophages were cultivated with hemolymph and challenged with C. neoformans. Then, their phagocytic and killing activities were assessed. The cytokines MCP-1, IFN-γ, TNF-α, IL-10, IL-12, and IL-6 were measured in culture supernatants 4- and 48-hours post-infection. Results: Both hemolymph samples directly affected the growth rate of the fungus in a dose-dependent manner. Either MPH or RPH was capable of inhibiting fungal growth by at least 70%, using the lowest dilution (1:20). Treatment of RAW 264.7 macrophages with hemolymph of both insects was capable of increasing the production of MCP-I and TNF-α. In addition, when these cells were stimulated with hemolymph in the presence of C. neoformans, a 2- and a 4-fold increase in phagocytic rate was observed with MPH and RPH, respectively, when compared to untreated cells. For the macrophage killing activity, MPH decreased in approximately 30% the number of viable yeasts inside the cells compared to untreated control; however, treatment with RPH could not reduce the total number of viable yeasts. MPH was also capable of increasing MHC-II expression on macrophages. Regarding the cytokine production, MCP-I and TNF-α, were increased in the supernatant of macrophages treated with both hemolymphs, 4 and 48 hours after stimulation. Conclusion: These results suggested that hemolymph of triatomines may represent a source of molecules capable of presenting antifungal and immunomodulatory activity in macrophages during fungal infection.

11.
Comput Biol Med ; 142: 105194, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35007945

RESUMO

Pneumonia is a serious global health problem that accounts for over one million deaths annually. Among the main microorganisms causing pneumonia, Mycoplasma pneumoniae is one of the most common ones for which a vaccine is immediately required. In this context, a multi-epitope vaccine against this pathogen could be the best option that can induce effective immune response avoiding any serious adverse reactions. In this study, using an immunoinformatics approach we have designed a multi-epitope vaccine (mpme-VAC/STV-1) against M. pneumoniae. Our designed mpme-VAC/STV-1 is constructed using CTL (cytotoxic T lymphocyte), HTL (Helper T lymphocyte), and B-cell epitopes. These epitopes are selected from the core proteins of 88 M. pneumoniae genomes that were previously identified through reverse vaccinology approaches. The epitopes were filtered according to their immunogenicity, population coverage, and several other criteria. Sixteen CTL/B- and thirteen HTL/B- epitopes that belong to 5 core proteins were combined together through peptide linkers to develop the mpme-VAC/STV-1. The heat-labile enterotoxin from E. coli was used as an adjuvant. The designed mpme-VAC/STV-1 is predicted to be stable, non-toxic, non-allergenic, non-host homologous, and with required antigenic and immunogenic properties. Docking and molecular dynamic simulation of mpme-VAC/STV-1 shows that it can stimulate TLR2 pathway mediated immunogenic reactions. In silico cloning of mpme-VAC/STV-1 in an expression vector also shows positive results. Finally, the mpme-VAC/STV-1 also shows promising efficacy in immune simulation tests. Therefore, our constructed mpme-VAC/STV-1 could be a safe and effective multi-epitope vaccine for immunization against pneumonia. However, it requires further experimental and clinical validations.


Assuntos
Epitopos de Linfócito T , Mycoplasma pneumoniae , Biologia Computacional/métodos , Epitopos de Linfócito T/química , Escherichia coli , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycoplasma pneumoniae/genética , Vacinas de Subunidades/química
12.
Peptides ; 148: 170707, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896165

RESUMO

Chronic non-healing wounds caused by microbial infections extend the necessity for hospital care and constitute a public health problem and a great financial burden. Classic therapies include a wide range of approaches, from wound debridement to vascular surgery. Antimicrobial peptides (AMPs) are a preserved trait of the innate immune response among different animal species, with known effects on the immune system and microorganisms. Thus, AMPs may represent promising candidates for the treatment of chronic wounds with dual functionality in two of the main agents that lead to this condition, proliferation of microorganisms and uncontrolled inflammation. Here, our goal is to critically review AMPs with wound healing properties. We strongly believe that these dual-function peptides alone, or in combination with other wound healing strategies, constitute an underexplored field that researchers can take advantage of.


Assuntos
Peptídeos Antimicrobianos/farmacologia , Cicatrização , Animais , Peptídeos Antimicrobianos/uso terapêutico , Humanos , Dermatopatias Bacterianas/tratamento farmacológico
13.
J. venom. anim. toxins incl. trop. dis ; 28: e20210124, 2022. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1386128

RESUMO

Triatomines are blood-feeding arthropods belonging to the subfamily Triatominae (Hemiptera; Reduviidae), capable of producing immunomodulatory and water-soluble molecules in their hemolymph, such as antimicrobial peptides (AMPs). In this work, we evaluated the antifungal and immunomodulatory activity of the hemolymph of Meccus pallidipennis (MPH) and Rhodnius prolixus (RPH) against Cryptococcus neoformans. Methods: We assessed the activity of the hemolymph of both insects on fungal growth by a minimum inhibitory concentration (MIC) assay. Further, RAW 264.7 macrophages were cultivated with hemolymph and challenged with C. neoformans. Then, their phagocytic and killing activities were assessed. The cytokines MCP-1, IFN-γ, TNF-α, IL-10, IL-12, and IL-6 were measured in culture supernatants 4- and 48-hours post-infection. Results: Both hemolymph samples directly affected the growth rate of the fungus in a dose-dependent manner. Either MPH or RPH was capable of inhibiting fungal growth by at least 70%, using the lowest dilution (1:20). Treatment of RAW 264.7 macrophages with hemolymph of both insects was capable of increasing the production of MCP-I and TNF-α. In addition, when these cells were stimulated with hemolymph in the presence of C. neoformans, a 2- and a 4-fold increase in phagocytic rate was observed with MPH and RPH, respectively, when compared to untreated cells. For the macrophage killing activity, MPH decreased in approximately 30% the number of viable yeasts inside the cells compared to untreated control; however, treatment with RPH could not reduce the total number of viable yeasts. MPH was also capable of increasing MHC-II expression on macrophages. Regarding the cytokine production, MCP-I and TNF-α, were increased in the supernatant of macrophages treated with both hemolymphs, 4 and 48 hours after stimulation. Conclusion: These results suggested that hemolymph of triatomines may represent a source of molecules capable of presenting antifungal and immunomodulatory activity in macrophages during fungal infection.(AU)


Assuntos
Animais , Hemolinfa/química , Triatominae/microbiologia , Criptococose/terapia , Cryptococcus neoformans/imunologia , Antifúngicos/uso terapêutico , Imunomodulação/fisiologia
14.
Front Immunol ; 12: 618365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434187

RESUMO

The current therapeutic options for Inflammatory Bowel Diseases (IBD) are limited. Even using common anti-inflammatory, immunosuppressive or biological therapies, many patients become unresponsive to the treatments, immunosuppressed or unable to restrain secondary infections. Statins are cholesterol-lowering drugs with non-canonical anti-inflammatory properties, whose underlying mechanisms of action still remain poorly understood. Here, we described that in vitro atorvastatin (ATO) treatment was not toxic to splenocytes, constrained cell proliferation and modulated IL-6 and IL-10 production in a dose-dependent manner. Mice exposed to dextran sulfate sodium (DSS) for colitis induction and treated with ATO shifted their immune response from Th17 towards Th2, improved the clinical and histological aspects of intestinal inflammation and reduced the number of circulating leukocytes. Both experimental and in silico analyses revealed that PPAR-α expression is reduced in experimental colitis, which was reversed by ATO treatment. While IBD patients also downregulate PPAR-α expression, the responsiveness to biological therapy relied on the restoration of PPAR-α levels. Indeed, the in vitro and in vivo effects induced by ATO treatment were abrogated in Ppara-/- mice or leukocytes. In conclusion, the beneficial effects of ATO in colitis are dependent on PPAR-α, which could also be a potential predictive biomarker of therapy responsiveness in IBD.


Assuntos
Atorvastatina/farmacologia , Colite/tratamento farmacológico , PPAR alfa/imunologia , Animais , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Sulfato de Dextrana/toxicidade , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Knockout , PPAR alfa/genética , Células Th17/imunologia , Células Th2/imunologia
15.
Front Immunol ; 12: 681671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349757

RESUMO

The sialotranscriptomes of Aedes aegypti revealed a transcript overexpressed in female salivary glands that codes a mature 7.8 kDa peptide. The peptide, specific to the Aedes genus, has a unique sequence, presents a putative secretory nature and its function is unknown. Here, we confirmed that the peptide is highly expressed in the salivary glands of female mosquitoes when compared to the salivary glands of males, and its secretion in mosquito saliva is able to sensitize the vertebrate host by inducing the production of specific antibodies. The synthetic version of the peptide downmodulated nitric oxide production by activated peritoneal murine macrophages. The fractionation of a Ae. aegypti salivary preparation revealed that the fractions containing the naturally secreted peptide reproduced the nitric oxide downmodulation. The synthetic peptide also selectively interfered with cytokine production by murine macrophages, inhibiting the production of IL-6, IL-12p40 and CCL2 without affecting TNF-α or IL-10 production. Likewise, intracellular proteins associated with macrophage activation were also distinctively modulated: while iNOS and NF-κB p65 expression were diminished, IκBα and p38 MAPK expression did not change in the presence of the peptide. The anti-inflammatory properties of the synthetic peptide were tested in vivo on a dextran sulfate sodium-induced colitis model. The therapeutic administration of the Ae. aegypti peptide reduced the leukocytosis, macrophage activity and nitric oxide levels in the gut, as well as the expression of cytokines associated with the disease, resulting in amelioration of its clinical signs. Given its biological properties in vitro and in vivo, the molecule was termed Aedes-specific MOdulatory PEptide (AeMOPE-1). Thus, AeMOPE-1 is a novel mosquito-derived immunobiologic with potential to treat immune-mediated disorders.


Assuntos
Aedes/imunologia , Colite/etiologia , Colite/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Proteínas e Peptídeos Salivares/imunologia , Sequência de Aminoácidos , Animais , Biomarcadores , Colite/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Imunomodulação , Ativação Linfocitária/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Proteínas e Peptídeos Salivares/química , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
J Venom Anim Toxins Incl Trop Dis ; 27: e20200027, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33889182

RESUMO

BACKGROUND: Mycobacterium leprae and Mycobacterium lepromatosis are gram-positive bacterial pathogens and the causative agents of leprosy in humans across the world. The elimination of leprosy cannot be achieved by multidrug therapy alone, and highlights the need for new tools and drugs to prevent the emergence of new resistant strains. METHODS: In this study, our contribution includes the prediction of vaccine targets and new putative drugs against leprosy, using reverse vaccinology and subtractive genomics. Six strains of Mycobacterium leprae and Mycobacterium lepromatosis (4 and 2 strains, respectively) were used for comparison taking Mycobacterium leprae strain TN as the reference genome. Briefly, we used a combined reverse vaccinology and subtractive genomics approach. RESULTS: As a result, we identified 12 common putative antigenic proteins as vaccine targets and three common drug targets against Mycobacterium leprae and Mycobacterium lepromatosis. Furthermore, the docking analysis using 28 natural compounds with three drug targets was done. CONCLUSIONS: The bis-naphthoquinone compound Diospyrin (CID 308140) obtained from indigenous plant Diospyros spp. showed the most favored binding affinity against predicted drug targets, which can be a candidate therapeutic target in the future against leprosy.

17.
Crit Rev Microbiol ; 47(3): 290-306, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33522328

RESUMO

The triggering receptor expressed on myeloid cells 1 (TREM-1) is an innate immunity receptor associated with the amplification of inflammation in sterile and non-sterile inflammatory disorders. Since its first description, the two isoforms of the receptor, membrane and soluble (mTREM-1 and sTREM-1, respectively) have been largely explored in the immunopathogenesis of several bacterial diseases and sepsis. The role of the receptor in these scenarios seems to be at least partly dependent on the source/type of bacteria, host and context. As uncontrolled inflammation is a result of several bacterial infections, the inhibition of the receptor has been considered as a promising approach to treat such conditions. Further, sTREM-1 has been explored as a biomarker for diagnosis and/or prognosis of several bacterial diseases. Therefore, this review aims to provide an updated insight into how the receptor influences and is influenced by bacterial infections, highlighting the advances regarding the use/manipulation of TREM-1 isoforms in biomedical research and clinical practice.


Assuntos
Infecções Bacterianas/imunologia , Isoformas de Proteínas/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/imunologia , Animais , Bactérias/genética , Bactérias/imunologia , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Biomarcadores/análise , Humanos , Imunidade , Isoformas de Proteínas/genética , Receptor Gatilho 1 Expresso em Células Mieloides/genética
18.
J. venom. anim. toxins incl. trop. dis ; 27: e20200027, 2021. tab, graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1287091

RESUMO

Mycobacterium leprae and Mycobacterium lepromatosis are gram-positive bacterial pathogens and the causative agents of leprosy in humans across the world. The elimination of leprosy cannot be achieved by multidrug therapy alone, and highlights the need for new tools and drugs to prevent the emergence of new resistant strains. Methods In this study, our contribution includes the prediction of vaccine targets and new putative drugs against leprosy, using reverse vaccinology and subtractive genomics. Six strains of Mycobacterium leprae and Mycobacterium lepromatosis (4 and 2 strains, respectively) were used for comparison taking Mycobacterium leprae strain TN as the reference genome. Briefly, we used a combined reverse vaccinology and subtractive genomics approach. Results As a result, we identified 12 common putative antigenic proteins as vaccine targets and three common drug targets against Mycobacterium leprae and Mycobacterium lepromatosis. Furthermore, the docking analysis using 28 natural compounds with three drug targets was done. Conclusions The bis-naphthoquinone compound Diospyrin (CID 308140) obtained from indigenous plant Diospyros spp. showed the most favored binding affinity against predicted drug targets, which can be a candidate therapeutic target in the future against leprosy.(AU)


Assuntos
Bacilos Gram-Positivos/patogenicidade , Vacinologia , Mycobacterium leprae/patogenicidade , Mycobacterium lepraemurium/patogenicidade
19.
Front Immunol, v. 12, 681671, jul. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3918

RESUMO

The sialotranscriptomes of Aedes aegypti revealed a transcript overexpressed in female salivary glands that codes a mature 7.8 kDa peptide. The peptide, specific to the Aedes genus, has a unique sequence, presents a putative secretory nature and its function is unknown. Here, we confirmed that the peptide is highly expressed in the salivary glands of female mosquitoes when compared to the salivary glands of males, and its secretion in mosquito saliva is able to sensitize the vertebrate host by inducing the production of specific antibodies. The synthetic version of the peptide downmodulated nitric oxide production by activated peritoneal murine macrophages. The fractionation of a Ae. aegypti salivary preparation revealed that the fractions containing the naturally secreted peptide reproduced the nitric oxide downmodulation. The synthetic peptide also selectively interfered with cytokine production by murine macrophages, inhibiting the production of IL-6, IL-12p40 and CCL2 without affecting TNF-α or IL-10 production. Likewise, intracellular proteins associated with macrophage activation were also distinctively modulated: while iNOS and NF-κB p65 expression were diminished, IκBα and p38 MAPK expression did not change in the presence of the peptide. The anti-inflammatory properties of the synthetic peptide were tested in vivo on a dextran sulfate sodium-induced colitis model. The therapeutic administration of the Ae. aegypti peptide reduced the leukocytosis, macrophage activity and nitric oxide levels in the gut, as well as the expression of cytokines associated with the disease, resulting in amelioration of its clinical signs. Given its biological properties in vitro and in vivo, the molecule was termed Aedes-specific MOdulatory PEptide (AeMOPE-1). Thus, AeMOPE-1 is a novel mosquito-derived immunobiologic with potential to treat immune-mediated disorders.

20.
Korean J Gastroenterol ; 76(3): 150-158, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32969363

RESUMO

Background/Aims: Therapies aimed at modulating cytokines have been used to treat inflammatory illnesses, such as inflammatory bowel disease. On the other hand, patients may become intolerant, refractory, or present with several side effects. Arthrospira (Spirulina) platensis (SPI) is a blue-green microalga with bioactive molecules that have been evaluated to treat inflammatory diseases. On the other hand, few studies have examined their effects on the production of specific cytokines and the intestinal architecture in dextran sulfate sodium (DSS)-induced colitis. Therefore, this study examined the effects of a treatment using SPI in a murine model of intestinal inflammation. Methods: All mice (C57BL/6 male) were evaluated daily for their food and water intake, bodyweight variations, and clinical signs of disease. Colon inflammation was induced by exposure to DSS for 6 consecutive days. SPI was given orally at 50, 100, and 250 mg/kg/day. ELISA was performed to assess the production of cytokines. Myeloperoxidase and nitric oxide were also investigated. The level of microscopic damage was assessed by staining colon sections with hematoxylin and eosin. Results: SPI attenuated the DSS-induced inflammation, with improvements in the clinical signs and a decrease in the production of inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ. In addition, particularly at 250 mg/kg, SPI attenuated the severity of colitis by modulating the level of mucosal and submucosal cell infiltration, which preserved the epithelial barrier. Conclusions: SPI may be an alternative source of bioactive molecules with immunomodulatory properties, and has great potential to be used in the treatment of inflammatory diseases.


Assuntos
Colite/terapia , Interferon gama/metabolismo , Spirulina/química , Fator de Necrose Tumoral alfa/metabolismo , Animais , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/uso terapêutico , Interferon gama/análise , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Peroxidase/metabolismo , Spirulina/metabolismo , Fator de Necrose Tumoral alfa/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...